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INTRODUCTION

It is very important to accurately predict the gas
pressure, gas and solid temperature, as well as the

amount of O-ring erosion inside the space shuttle
Reusable Solid Rocket Motor (RSRM) joints in the

event of a leak path. The scenarios considered are
typically hot combustion gas rapid pressurization events

of small volumes through narrow and restricted flow

paths. The ideal method for this prediction is a transient
three-dimensional computational fluid dynamics (CFD)

simulation with a computational domain including both
combustion gas and surrounding solid regions.

However, this has not yet been demonstrated to be
economical for this application due to the enormous

amount of CPU time and memory resulting from the
relatively long fill time as well as the large pressure and

temperature rising rate. Consequently, all CFD
applications in RSRM joints so far 1'2 are steady-state

simulations with solid regions being excluded from the
computational domain by assuming either a constant

wall temperature or no heat transfer between the hot
combustion gas and cool solid walls.

The complicated gas dynamics, heat transfer, and O-

ring erosion phenomena in the RSRM joint
pressurization process are currently modeled by two
widely used computer codes. One is SFLOW 3'4, which

was recently developed at ATK Thiokol Propulsion, and
the other is JPR 5'6, which was developed by NASA

Marshall Space Flight Center. While both codes apply
SINDA/G 7, a commercial thermal analyzer, to calculate

the solid temperature for a given heat flux, the flow

solvers used to model the transient compressible flows
are very different. Before SFLOW was developed, a
code called ORING2 8 and its previous version ORING

had been widely used at ATK Thiokol Propulsion to

predict the thermal-flow environment at various RSRM

joints. The major difference between these codes is also

the flow solver used to calculate the pressure,

temperature, and Mach number of the gas as well as the

heat flux from the hot combustion gas to the
surrounding cold solid parts.

The flow of high pressure and high temperature
combustion gas from the RSRM combustion chamber to

the O-ring grove inside various joints is a highly
transient compressible process involving flow area

change, friction, heat transfer from the hot gas to cold
solid walls, as well as the mass addition due to the flow

path and O-ring erosion. The main objective of this

paper is to assess the capability of various flow solvers,
which have been used in simulating the thermal

environments of RSRM joints, to accurately predict
transient compressible flow phenomena with area
change, friction, heat transfer, and mass addition.

Besides the flow solvers used in SFLOW, ORING2,
ORING and JPR, another flow solver is studied where

the governing equation is the generalized one-

dimensional steady flow equation taking into account
the effects of area change, friction, heat transfer and
mass addition 9. Specifically, the following five flow

solvers have been incorporated into SFLOW to study
their capability in accurately predicting the transient

compressible flows with area change, friction, heat
transfer and mass addition: (1) isentropic method, (2)
ORING2 method, (3) Lapple 1° method, (4) generalized
method, and (5) SHARP 1H3 method. Note that,

although SHARP can perform two-dimensional as well
as three-dimensional CFD simulations, only the one-

dimensional part is considered in this paper. The other
four solvers are for one-dimensional flows only.

The following test cases with exact solutions are used to
assess the above flow solvers: (1) steady flow with area

change, (2) steady flow with friction, (3) steady flow
with heat transfer, (4) steady flow with mass addition,
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(5) transientflowwithareachange,(6)transientflow
withheattransfer,(7)transientflowwithareachange,
friction,andheattransfer,and(8)volumefilling.

Thedetailsofvariousflowsolversarediscussedinnext
sectionfollowedbythecomparisonofpredictionsfrom
variousflowsolverswiththeexactsolutions.

NUMERICAL METHODS

Isentropic Method

For steady isentropic flow in a pipe, the ratio of critical
pressure to inlet stagnation pressure is

7"

po /7+1 )

(1)

where 7 is the ratio of specific heats. If the ratio of back

pressure to inlet stagnation pressure Pb/Po is larger than
this critical pressure ratio, the flow is not choked and
the mass flow rate is obtained from

th = Cdp_ V,A _ (2)

CapoA , ]27(p_)2'r[1 (p_l _r-'''r-

If the pressure ratio PJPo is smaller than the critical
pressure ratio, the flow is choked and the mass flow rate
is obtained from

y+l

_ C apoA, [-J 2 S_r-l, (8)

Note that equation (8) can be obtained by replacing

PffPo in equation (7) with the critical pressure ratio in
equation (1).

ORING2 Method

While the isentropic method discussed in the last section

applies a discharge coefficient to account for

nonisentropic effects such as friction, the ORING2
method eliminates the discharge coefficient and

introduces a form loss parameter K. For flows with
friction loss only,

where 9e, V_ and Ae are the density, velocity and cross-
section area at the pipe exit, respectively. The discharge

coefficient Ca accounts for the non-isentropic effects on
the mass flow rate such as friction. The gas properties at

the pipe exit can be calculated as

Lf
K = "---_ (9)

D

where D is the hydraulic diameter and L is the length of
the flow path. The Darcy friction factor is defined as

1

I,, (3) 1 (10)

V = M, y.ff-_, (4)

(5)

T_ =7"o(1 -1 _ -i
(6)

where R is the gas constant, P0 and To are the stagnation
density and temperature at the pipe inlet, respectively.
Substituting equations (3) and (6) into equation (2)

yields

where % is the wall shear stress and V,, is the bulk

velocity inside the flow path. In general, the loss

parameter K should also include pressure loss due to
sudden expansion or contraction and turns or bends in

the flow path.

In the ORING2 method, the critical pressure ratio is
calculated as

7"

P* I _'-IM_(I+K) 7,1___0= 1- 2
1+ Y-IM, z

v 2

(11)

where the choked Mach number is obtained from
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I-B-fiB -4ACMc = 2A
(121)

A= 1--2---1
1 + K (13)

C__

2

(1 + K)(y- 1) 2 (14)

B__

3 37/-1

(l+K)(7-1) (y-l) 2
(15)

If the ratio of back pressure to inlet stagnation pressure

PJPo is larger than the critical pressure ratio in equation
(11), the flow is not choked and the Mach number at the

pipe exit is

t /"/
M, 2 1 _P0 )

= y_! I+K r-, (16)
1_ 1_2_._I_(P_ lr

1+,<[ t"o) j

obtain a new mass flow rate. This process is repeated

until the form loss and mass flow rate are converged.

Lapple Method

For steady adiabatic flows in a pipe with constant cross-
section area and no mass addition, Lapple J° derived a
method to calculate the mass flow rate as

(18)

A table was developed for the mass flow rate at

different loss factor K, ratio of specific heats 7, and
pressure ratio PJPo This Lapple table only lists mass

flow rate for K up to 200. In some applications such as
the carbon fiber rope 4, however, the friction factor is

usually very large and K could be as large as 10 6. Thus,

the Lapple table is extended in SFLOW for large values
of K based on the asymptotic relationship

poA, .y
rh= R.f_o _lK for K _oo (19)

The mass flow rate is then obtained from

Y

poA, M(1--_KM2Ir---7

rh = _ .f_y (1 + __ M, 12'_r+-l'_

(17)

The Mach number M in equation (17) is the choked

Mach number Mc if the back pressure to inlet stagnation
pressure P_Po is smaller than the critical pressure ratio
and is the unchoked Mach number Me if the flow is not
choked. It can be shown that, for flows with no form

loss (i.e., K=0), equation (17) is identical to equations
(7) and (8) of the isentropic method.

Note that the ORING2 method does not take into
account the effects of heat transfer and mass addition

when the mass flow rate is calculated using equation

(17). Note also that, in real problems, the loss factor is

usually a function of mass flow rate and, thus, an
iteration method has to be applied to calculate the mass

flow rate from equation (17). In SFLOW, a loss factor is
first guessed and then equation (17) is used to calculate
the mass flow rate. A new loss factor is obtained from

this mass flow rate and equation (17) is applied again to

In particular, for K>200, the mass flow rate is calculated
by

t'_[ x,0.1522-0.O451p_/po+O.3275(pb/Po)"

,+,: / (20)
?Rrovxl po)

The constants in this equation are obtained by curve
fitting using the least-square method.

Note that, similar to the ORING2 method, iteration

methods should also be applied for calculating the mass
flow rate due to the fact that the loss factor usually

depends on the mass flow rate. The Lapple method also
does not take into account the effects of heat transfer

and mass addition when the mass flow rate is calculated.

Figure 1 and Figure 2 show the mass flow rate for

different pressure ratios as well as loss factors. The ratio
of specific heats used in these figures is 1.4. As

expected, the flow rate increases with decreasing
friction and with decreasing pressure ratio but the flow

rate is constant for very large friction or small back

pressure due to choking.
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Figure 1: Mass flow rate vs. pressure ratio for different
loss factors in the Lapple method,

Figure 3: Comparison of mass flow rate vs. pressure
ratio for isentropic and Lapple methods.
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Figure 2: Mass flow rate vs. loss factor for different

pressure ratios in the Lapple method.

Figure 3 compares mass flow rate vs. pressure ratio for

isentropic and Lapple methods when there is no
pressure loss (i.e., K=0). The specific heat ratio used is
1.4 and the discharge coefficient is 1.0. Both methods

predict the same mass flow rate for choked flow when

pJpo<0.53 and no flow for PJPo =1. For unchoked flow
with 0.9<pjpo<l, however, the mass flow rate predicted

by the Lapple method is slightly smaller than that from
the isentropic method. This is because the Lapple table
does not list mass flow rate for 0.9<p_/po<l and curve

fitting is used in SFLOW to calculate mass flow rate at

this pressure range, where the mass flow rate decreases
dramatically with increasing pressure ratio. Note that, as
discussed above, the mass flow rate from the ORING2

method, equation (17), when K=0 is the same as that
from the isentropic method.

The mass flow rate vs. pressure ratio from ORING2 and

Lapple methods for different loss factors are compared
in Figure 4 and Figure 5 with a specific heat ratio of 1.4.

In general, the ORING2 method predicts a mass flow
rate smaller than that from the Lapple method.

<
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Figure 4: Comparison of mass flow rate vs. pressure
ratio from ORING2 and Lapple methods for K= 1 and

K=5.
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Figure 5." Comparison of mass flow rate vs. pressure
ratio from ORING2 and Lapple methods for K= 100 and

K= I O00.

Generalized Method

Both the ORING2 and Lapple methods discussed above
do not take into account the effects of heat transfer and

mass addition when the mass flow rate is calculated. A

generalized steady flow equation relating the Mach
number and area change, friction, heat transfer as welt
as mass addition parameters can be derived as

dM = I+-c_-_-M" [_dA + yM' f dx 1+ yM'-a'T o _-(I+ rM")--_] (21)
M l-M: L A 2 D 2 T O

Once the Mach number at every flow cells is obtained

by solving this ordinary differential equation, the

pressure and temperature at cell i+1 can be calculated
from

mi Ai+j M ,+I + M i2+l

Toi< l+_1Mi21

• ( z .)_ (23)

T*+'= To,(I+ T_21M2÷ I

The stagnation temperature and mass flow rate at cell
i+l can be obtained from the heat transfer and the mass

addition to the gas using energy and mass conservations
laws

Tu,i< = To.i + q' (24)
Cp

tni+ 1 = rh i + rn. i (25)

where q, and m,.i are the heat transfer and mass addition

to the gas at cell i. For a real problem, the inlet Mach
number is usually unknown and the known values are

the stagnation pressure and temperature at the inlet and

the back pressure at the outlet. Moreover, the friction
factor, heat transfer, and mass addition are often
functions of mass flow rate. Therefore, an iteration

method has to be applied to calculate flow properties

using the generalized method. In SFLOW, the inlet
Mach number is first guessed, the friction factor, heat
transfer, and mass addition are then evaluated• Next,

equation (21) is solved for Mach number at every flow

cells using the forth-order Runge-Kutta method. Finally,
the pressure and temperature at every cell are calculated

from equations (22) and (23). The process is repeated
until the outlet pressure matches the known value.

SHARP Method

All the methods discussed above are derived for steady

flow problems. The transient compressible flow in a
path can be modeled using SHARP u13, which is a

general-purpose CFD code. While SHARP can also
solve two-dimensional as well as three-dimensional

flow problems, only one-dimensional flows are
considered in this paper. In one-dimensional flow

problems, SHARP solves the Navier-Stokes equation as

b__Q_Q+ a___E_E= S (26)
at Ox

where the unknowns are

Q=A u (27)

where p and u are the gas density and velocity,
respectively. The total energy is
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(28)

whereT is the gas temperature and c_ is the specific heat
at constant volume. The inviscid flux term is given by

.1a
(e+p)uJ

(29)

The source term in equation (26) is

S _

rhA
v

fApu lu l
2D

• a ;API.I'
-qv 2D

(30)

where V is the volume of the flow cell.

Note that, unlike the other solvers, both SHARP and

generalized methods do not solve the mass flow rate
directly. Instead, the Mach number, pressure, and

temperature in the flow path are calculated and the mass
flow rate can then be obtained as th = pAu. Note also

that the predicted mass flow rate from SHARP is not
necessary constant at different cells of a flow path

whereas all other four methods predict the same mass
flow rate at different cells.

Pressure, Temperature_ Mach number in Flow Path

The isentropic, Lapple and ORING2 methods only give

a way to calculate the mass flow rate in the flow path.
For the solid rocket joint simulations, the pressure,

temperature and Mach number in the flow path are also
needed to calculate the heat transfer from the hot

combustion gas to the cold solid surfaces. In this paper,

the pressure, temperature and Mach number in the flow
path for these methods are calculated by the generalized
method using the calculated mass flow rate.

Specifically, the inlet Mach number is obtained from the
inlet pressure and temperature as well as the mass flow
rate. Then the generalized steady flow equation (21) is
solved to obtain the Mach number at every flow cell.

Next, the pressure and temperature at every cell inside

the flow path are calculated from equations (22) and
(23). This way, if the mass flow rate calculated is
correct, the Mach number, pressure and temperature

should also be correct for steady flows. Note that, unlike

the generalized method, no iteration is needed since the
mass flow rate is calculated separately before the

generalized steady equation is solved.

RESULTS

Most of the results shown in this paper are from test

problems where the inlet stagnation pressure and
temperature as well as the outlet pressure are know. The
area of the pipe as well as the magnitudes of friction,
heat transfer, and mass addition are also specified. The

Mach number, pressure and temperature inside the pipe
are calculated using various methods discussed above.

The gas in all test problems is assumed to be perfect gas

with a specific heat ratio of 1.4 and gas constant-of 287
m2/s2-K.

Steady Flow with Area Change

The following adiabatic frictionless steady flow

problem with no mass addition is considered in this
section. Air at stagnation pressure of 0.1215 MPa and

temperature of 368.34 K enters a nozzle having a cross-
section area of

A- C3 (31)
Cox + C2

The axial distance of the nozzle is from x=-0 to x=20 m.

The constants C3=1 and C2=100. Two cases are studied:

(1) Co =1 and outlet pressure of 84.63 kPa for the

converging nozzle and (2) Co=-I and outlet pressure of
132.41 kPa for the diverging nozzle.

The Mach number and pressure distribution inside the

converging nozzle predicted by isentropic, ORING2,
Lapple and generalized methods are compared with the
exact solution in Figure 6 and Figure 7, respectively.

Note that a discharge coefficient of unity is applied for

the isentropic method. It is evident that the predict Mach
number and pressure from isentropic method, ORING2,

and generalized methods agree very well with the exact
solution. For the Lapple method, the predicted Mach

number is slightly smaller whereas the pressure is

slightly larger than the exact solution because of the
lower predicted mass flow rate as suggested in Figure 3.
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Figure 6: Comparison of Mach number predicted from

different methods with the exact solution.

Figure 8: Comparison of Mach number predicted from
SHARP with different number of cells and the exact

solution.
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Figure 7: Comparison of pressure predicted from
different methods with the exact solution.

Figure 8 and Figure 9 show the Mach number and

pressure distribution for the converging nozzle predicted
by the SHARP method, respectively, together with the

exact solution. The predicted Mach number and

pressure using 200 flow cells agree very well with the
exact solution whereas the predictions with 20 cells are

not as good.
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Figure 9." Comparison of pressure predicted from
SHARP with different number of cells and the exact

solution.

The Mach number and pressure distribution for the

diverging nozzle predicted by isentropic, ORING2,

Lapple and generalized methods are compared with the
exact solution in Figure 10 and Figure 11, respectively.

The predicted Mach number and pressure by these
methods agree very well with the exact solution. Similar

to the converging nozzle, the predicted Mach number
from the Lapple method is smaller whereas the pressure

is larger than the exact solution because of the lower
mass flow rate as suggested in Figure 3. However, the

discrepancy between the Lapple prediction and exact
solution is much larger for the diverging nozzle than the

converging nozzle because the pressure ratio PJPo is
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Figure 13." Comparison of pressure predicted from
SHARP with different number of cells and the exact

solution for the diverging nozzle.

Steady Flow with Friction

Figure 12 and Figure 13 show the Mach number and
pressure distribution for the diverging nozzle predicted

by the SHARP method, respectively. Similar to the
diverging nozzle, the predicted Mach number and

pressure using 200 flow cells agree very well with the
exact solution whereas the predictions with 20 cells are

not as good. That is, more flow cells are usually

required to obtain accurate results using SHARP than
other methods.

The following adiabatic steady flow problem with no

area change and no mass addition is considered in this

section. Air enters a pipe at a stagnation pressure of
0.1007 MPa and temperature of 300.6 K. This pipe has
a diameter of 0.1 m, length of 274.385 m, and friction

factor of 0.024. The pressure at the pipe exit is 19.54
kPa.

The Mach number and pressure distribution predicted

by SHARP, ORING2, Lapple and generalized methods
are compared with the exact solution in Figure 14 and

Figure 15, respectively. It is evident that the predict
8
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Mach numberand pressurefrom SHARPand
generalizedmethodsa_eeverywell with theexact
solution•However,theLapplemethodoverpredictsthe
Machnumberandunderpredictsthepressurewhereas
theORING2methodunderpredictstheMachnumber
andoverpredictsthepressure.Thisisconsistentwiththe
factthatLapplemethodpredictsahighermassflowrate
thantheORING2methodasdiscussedinFigure4 and
Figure5.

E
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For this case, the optimal discharge coefficient is 0.172.

A discharge coefficient smaller than this value predicts
smaller Mach number and larger pressure whereas a

discharge coefficient larger than this value predicts
larger Mach number and smaller pressure.
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Figure 16: Comparison of Mach number predicted from

the isentropic method with different discharge
coefficients and the exact solution.

Figure 14." Comparison of Mach number predicted from

different methods with the exact solution.
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Figure 15." Comparison of pressure predicted from
different methods with the exact solution.

i

_oo6 7 _ cd=0:5 --u.®. _

if" I ....... 0=0.172 "_I? 1

0.02/, . • • , .... t .... a .... , .... , ._1

0 50 100 150 200 250

x (m)

Figure 17: Comparison of pressure predicted from the
isentropic method with different discharge coefficients

and the exact solution.

Steady Flow with Heat Transfer

Figure 16 and Figure 17 show the Mach number and

pressure distribution predicted by the isentropic method,
respectively. Since this method does not take into
account the effect of friction when the mass flow rate is

calculated, a discharge coefficient smaller than unity

should be applied to obtain the correct mass flow rate.

The following frictionless steady flow problem with no
area change and no mass addition is considered in this

section. Heat is added to a pipe with a diameter of 0.01
m and length of 20 m at a rate of 200 J/re. Air enters

this pipe at a stagnation pressure of 0.1007 MPa and
temperature of 300.6 K. The pressure at the pipe exit is

9
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93.73kPa.Thisproblemis solvedusingall thefive
methodsandthepressureandMachnumberinsidethe
pipearecomparedwiththeexactsolutions.

TheMachnumberandpressuredistributionpredicted
bySHARP,ORING2,Lappleandgeneralizedmethods
arecomparedwiththeexactsolutionin Figure18and
Figure19,respectively.ThepredictMachnumberand
pressurefromSHARPandgeneralizedmethodsagree
verywell withtheexactsolution.BothLappleand
ORING2methodsoverpredicttheMachnumberand
underpredictthepressurebecausetheeffectsof heat
additionisnotconsideredandthepredictedmassflow
ratefromthesetwomethodsismuchlarger.
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Figure 18: Comparison of Mach number predicted from
different methods with the exact solution.
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Figure 19: Comparison of pressure predicted from

different methods with the exact solution.

Figure 20 and Figure 21 show the Mach number and
pressure distribution predicted by the isentropic method,

respectively, together with the exact solution. Since this
method does not take into account the effect of heat

addition when calculating mass flow rate, a discharge
coefficient smaller than unity should be applied to
obtain the correct mass flow rate. For this case, the

optimal discharge coefficient is 0.034. A discharge
coefficient smaller than this value predicts smaller

Mach number and larger pressure whereas a discharge

coefficient larger than this value predicts larger Mach
number and smaller pressure.

....... cd=0.034

0.6 .... cd=0.02 _ -

0z 0.4

..°.o.°.°.°.°°°°°'°........... .::.Z.Z:.Z-Z
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x _m)

Figure 20: Comparison of Mach number predicted from
the isentropic method with different discharge

coefficients and the exact solution.
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Figure 21: Comparison of pressure predicted from the

isentropic method with different discharge coefficients
and the exact solution.

10

American Institute of Aeronautics and Astronautics



Steady Flow with Mass Addition
OAK

The following adiabatic frictionless steady flow

problem with no area change is considered in this o_oc
section• Air at the same temperature as the air inside is

added to a pipe with a diameter of 0.1 m and length of _ oo,x
20 m at a rate of 0.5 kg/s-m. Air enters this pipe at a

stagnation pressure of 0.1007 MPa and temperature of
300.6 K. The pressure at the pipe exit is 91.34 kPa. _ o08(

The Mach number and pressure distribution predicted

by SHARP, ORING2, Lapple and generalized methods
are compared with the exact solution in Figure 22 and

Figure 23, respectively. The predict Mach number and

pressure from SHARP and generalized methods agree
very well with the exact solution. Both Lapple and
ORING2 methods overpredict the Mach number and

underpredict the pressure because the effects of mass
addition is not taken into account and the predicted
mass flow rate from these two methods is much larger.

1,0

0,8

__ 0.6
E

z
.1=

0.4

0.2

.... I .... ! .... I ....

SHaY /
...... generabzed .s_".

--- t._pp_ ,_',"
.... ORING2 _"

0 a exact _o,a _

° , , • i .... I .... a ....

5 I0 15

x (m)

20
O.C

Figure 22." Comparison of Mach number predicted from

different methods with the exact solution.
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Figure 23: Comparison of pressure predicted frorn

different methods with the exact solution.

Figure 24 and Figure 25 show the Mach number and
pressure distribution predicted by the isentropic method,

respectively, together with the exact solution. Since this
method does not take into account the effect of mass

addition when calculating mass flow rate, a discharge

coefficient smaller than unity should be applied to
obtain the correct mass flow rate. For this case, the

optimal discharge coefficient is 0.03. A discharge
coefficient smaller than this value predicts smaller

Mach number and larger pressure whereas a discharge
coefficient larger than this value predicts larger Mach

number and smaller pressure.
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Figure 24." Comparison of Mach number predicted from
the isentropic method with different discharge

coefficients and the exact solution.
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Figure 25: Comparison of pressure predicted from the

isentropic method with different discharge coefficients
and the exact solution.

Transient Flow with Area Chan_e

All the test cases shown above are steady flow problems

and only the SFLOW predictions at long times were

compared with the exact steady-state solution. In this
and the following two sections, the various flow solvers
are assessed using one-dimensional unsteady flow
problems with analytical solutions derived by Cai 14.

It can be shown that for one-dimensional adiabatic

frictionless compressible flow in a nozzle with a cross-
section area shown in equation (31), one exact solution

of the governing equation is

U_----

p = Const

p = const
2C0 (Cox + C2)

2Cot + CI

(32)

if there is no mass addition. Similar to the steady flow
with area change problems discussed above, two cases

are studied: (l) a converging nozzle with Co =1 and (2)
a diverging nozzle with Co=-I. For both cases, the gas is

air with a static pressure of 0.1 MPa and temperature of

300 K. The stagnation pressure and temperature as well
as the static pressure at the nozzle outlet are specified

whereas the velocity and pressure inside the nozzle are
calculated.

The governing equation for this transient flow problem
with area change only is

_u +u3U+l_P =0 (33)
c3t _x p 0x

In this problem, the pressure is constant and the term

u3u/_ is balanced by 3u/cgt. For isentropic, ORING2,

Lapple and generalized methods, however, steady state

(i.e., _/0t=0) is assumed and the pressure term has to

be nozero to balance uo_u/_. For the converging nozzle,

u3u/cgx >0 and the outlet pressure predicted from these
methods will be smaller than the predicted inlet pressure

whereas the predicted outlet pressure for the diverging

nozzle will be larger than the predicted inlet pressure
since u3u/3x <0.

The velocity at the inlet and outlet from ORING2,

Lapple, SHARP, and generalized methods are compared
with the exact solution in Figure 26 and Figure 27,

respectively, for the converging nozzle problem. The
velocity predicted by SHARP method agrees very well
with the exact solution whereas ORING2 and

generalized methods predict a much smaller velocity.

Note that the generalized method and the ORING2
method predict the same velocity since there are no

friction, heat transfer and mass addition in this problem.
The Lapple method predicts even smaller velocity than
ORING2 and generalized methods at later times when

the pressure ratio is closer to unity, consistent with the

smaller predicted mass flow rate by the Lapple method
shown in Figure 3.

15

• , • i , • • J , • • i • • • i • • •

200 _ _ SHARP

...... generalized

_. --- Lapple

.... ORING2

N _ a a exact

5O

• . . t . . . i . . a I | a | I , , •

0.0 0.2 0.4 0.6 0.8 1.0

Tm'ae (s)

Figure 26." Comparison of inlet velocity predicted by
various flow solvers with the exact solution.
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Figure 27." Comparison of outlet velocity predicted by
various flow solvers with the exact solution.

Figure 28 shows the comparison of inlet and outlet

pressure predicted by SHARP and generalized methods
with the exact solution. The pressure predicted by

SHARP method agrees very well with the exact

solution. For the generalized method, the outlet pressure

agrees well with the exact solution but the inlet pressure
is much larger, consistent with the above analysis using

equation (33). Although not shown here, the isentropic,
ORING2, and Lapple methods predict qualitatively

similar pressure with the generalized method.

o.]1ol , . . , • , . , • ... , • . . , • , .

[ • -- generalized mlet

_ ....... generahzed outlet

o.,o,I. \ ..... s Pou, ,

0.1_ "8__ '_'Ip'_'_'_P_'9

0.095 . . . i . . , , • • • , • • • ' -

0,0 0.2 0.4 0.6 0.8 1.0

Tmqe (s)

Figure 28." Comparison of inlet and outlet pressure

predicted by SHARP and generalized methods with the
exact solution.

Figure 29 and Figure 30 show the velocity at the inlet
and outlet from the isentropic method compared with
the exact solution. As expected, the predicted velocity is

larger for larger discharge coefficient. Unlike the

steady-state problems, however, there is no single value
of discharge coefficient which matches the exact

velocity. A time dependent discharge coefficient near
1.15 could be used to match the outlet velocity at

different times, but the predicted inlet velocity using

this discharge coefficient is much smaller than the exact
solution.
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",h D
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Figure 29: Comparison of inlet velocity predicted from
the isentropic method with different discharge

coefficients and the exact solution.

200

100

Figure 30: Comparison of outlet velociO, predicted from
the isentropic method with different discharge

coefficients and the exact solution.

The velocity at the inlet and outlet from ORING2,

Lapple, SHARP, and generalized methods are compared
with the exact solution in Figure 31 and Figure 32,

respectively, for the diverging nozzle problem. Similar
to the converging nozzle problem, the velocity predicted

by SHARP method agrees very well with the exact
13
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solution•ORING2,Lapple,andgeneralizedmethods,
however,predicta muchlargervelocityin contrastto
thesmallervelocitypredictedfortheconvergingnozzle.
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Figure 33." Comparison of inlet and outlet pressure
predicted by SHARP and generalized methods with the

exact solution for the diverging nozzle.

Figure 31: Comparison of inlet velociO' predicted by
various flow solvers with the exact solution for the

diverging nozzle.
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Figure 32: Comparison of outlet velocity predicted by

various flow solvers with the exact solution for the
diverging nozzle.

Figure 33 shows the comparison of inlet and outlet

pressure predicted by SHARP and generalized methods
with the exact solution. The pressure predicted by
SHARP method agrees very well with the exact

solution. For the generalized method, the outlet pressure

agrees well with the exact solution but the inlet pressure
is much smaller, consistent with the above analysis

using equation (33). Although not shown here, the

isentropic, •RING2, and Lapple methods predict
similar pressure as the generalized method.

Figure 34 and Figure 35 show the velocity at the inlet
and outlet from the isentropic method compared with

the exact solution. As expected, the predicted velocity is
larger for larger discharge coefficient. Unlike the

steady-state problems, however, there is no single value
of discharge coefficient which matches the exact

velocity. A time dependent discharge coefficient near
0.8 could be used to match the outlet velocity at

different times, but the predicted inlet velocity using

this discharge coefficient will not match the exact
solution.

, ..............__......__.......6,0.....7";1' ... '
n n exact so ,.. []

._ 15(] /" .-"" O '

"_ i °'/ 'Y []

_w_ _ ...." n
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 34: Comparison of inlet velocity predicted from

the isentropic method with different discharge
coefficients and the exact solution for the diverging

nozzle.
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Figure 35." Comparison of outlet velocity predicted from
the isentropic method with different discharge

coefficients and the exact solution for the diverging
nozzle.

Transient Flow with Heat Transfer

It can be shown that for one-dimensional frictionless

compressible flow in a circular pipe with a heat transfer
rate per unit mass of

r C,p(Clx+C3 j.c.,c,q=T-1 C5 _-_lt+_.z
(34)

from SHARP agrees very well with the exact solution

whereas those from Lapple and generalized methods do

not agree well. For ORING2 and isentropic methods
with a discharge coefficient of 1.0, the predicted inlet

Mach number agree well with the exact solution but the

predicted outlet Mach number is larger. No optimal

discharge coefficient exists for the isentropic method
which predicts Mach number in good agreement with
the exact solution at all locations and times.

0J5
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0._

• . • | , • . | , . . i • • • i • , ,
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Figure 36." Comparison of inlet and outlet Mach number
predicted from the SHARP method with the exact

solution.

the exact solution of the governing equation is

p = const
C, (Clt + C2)c, ,c,

P = (C,x+ C3"_+c''c')
C_x + C3

U _

Clt + C_

(35)

if the cross-section area is constant and there is no mass

addition. This transient flow with heat transfer case was

simulated using various flow solvers by assuming Cj=

C4=1, C3= C5=5000 and 6"2=15. The flow path is from
x=0 to x=-20 m. The gas is air with a static pressure of

0.1 MPa. The stagnation pressure and temperature as
well as the static pressure at the nozzle outlet are

specified as input whereas the velocity and pressure

inside the pipe are calculated.

E

7-

0.6

0.4

• , • I • ' " I • , • I • • • ! • ' "

x

x

x
in

• _q**, t'1

x

x
x

SFLOW inlet

*-- SFLOW outlet

[] t,.J Exact inlet

X X Exact outlet

"_ O X

I "__ "''-- ° o o o o

0.0 0.2 0.4 0.6 0.8 1.0

Ttme (s)

Figure 37: Comparison of inlet and outlet Mach number

predicted from the generalized method with the exact
solution.

Figure 36 to Figure 40 show the comparison of inlet and
outlet Mach number predicted by the five flow solvers

with the exact solution. The predicted Mach number
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Figure 38: Comparison of inlet and outlet Mach number
predicted from the Lapple method with the exact

solution.
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Figure 39." Comparison of inlet and outlet Mach number
predicted from the ORING2 method with the exact

solution.
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Figure 40: Comparison of inlet and outlet Mach number
predicted from isentropic method with different

discharge coefficients and the exact solution.

Transient Flow with Area ehange_ Friction_ and Heat
Transfer

For one-dimensional compressible flow in a circular

pipe with area A, friction factor f, and heat transfer rate

q given by

1
A = (36)

C4 e xp (- _-7_l x l+ _vC-_Dr

4

f = 4cl(C, exp(- _3/-_-_tx)+ C_,[_)
(37)

[-x--(C,(C, exp(- x.f_7-_-,x)+ C_-_7-x)_ 3

q =-_/_-1 / " _ / (38)

the exact solution is

U _

p = const

t_ = const

C: t + C 3

(39)

if there is no mass addition. This transient flow with

area change, friction, and heat transfer case is simulated
using SFLOW by assuming Co= Cs= C4=1, Cj=1000,
and 6"2=15. The flow path is from x=0 to x=20 m. The

gas is air with a static pressure of 0.1 MPa and

temperature of 300 K. The stagnation pressure and
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temperatureaswellasthestaticpressureatthenozzle
outletarespecifiedasinputwhereasthevelocityand
pressureinsidethepipearecalculated.

assumedwhenthemassflowrateiscalculateatevery
timestep)butSHARPtreatstheflowastransient.

Thepredictedvelocityattheinletiscomparedwiththe
exactsolutioninFigure41.A verygooda_eementis
obtainedfortheSHARPmethodwhereasthepredicted
velocitiesfrom ORING2,Lappleand generalized
methodsaremuchsmaller.
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Figure 42: Comparison of predicted tank pressure with
the exact solution derived by assuming the flow is quasi-

stead)'.

CONCLUSIONS

Figure 41: Comparison of predicted inlet velocit 3"with
the exact solution.

Volume Filling

All the test problems discussed above focus on
calculating flow properties inside a flow path with

specified inlet stagnation pressure and temperature, as
well as static pressure at the path exit. A volume filling
problem is studied in this section where the mass flow
rate is calculated similar to the problems discussed

above and the pressure and temperature in the tank are

calculated by mass and energy conservation laws using
the mass flow rate at the pipe inlet and outlet 3.

Specifically, air at a pressure of 1,000 psia and
temperature of 5,400 R fills a tank with a volume of 100
in3. The tank initial pressure and temperature is 14.7

psia and 540 R. The area of the flow path is 0.0235 in2.

Figure 42 shows the predicted volume pressure in

comparison with the exact solution. A discharge
coefficient of 1.0 is used for the isentropic method. The

volume pressure predicted by isentropic, ORING2,

Lapple and generalized methods agree very well with
the exact solution whereas that from SHARP is smaller.

This is because the exact solution is derived by

assuming the flow is quasi-steady (i.e., steady state is

The capability of various flow solvers in predicting
transient compressible flow phenomena with area
change, friction, heat transfer, and mass addition has

been assessed. Specifically, the following flow solvers
have been studies in detail: isentropic method, ORING2

method, Lapple method, generalized method, and
SHARP method. Of the five solvers, only SHARP is

designed for transient flow problems whereas all other
solvers assume the flow is quasi-steady. The isentropic

method only considers the effect of area change and
applies a discharge coefficient to take into account the
effects of friction, heat transfer, and mass addition. Both

ORING2 and Lapple methods try to take into account
the effects of friction, but heat transfer and mass

addition are neglected when the mass flow rate is

calculated. The generalized method considers area

change, friction, heat transfer as we/I as mass addition.

SHARP method is the most accurate among the five

flow solvers studied in this paper. The results from
SHARP agree very well with the exact solution for all

test problems shown in this paper except the volume
filling problem where the exact solution is derived by

assuming the flow is quasi-steady.

The generalized method is capable of accurately solving

all steady flow problems with area change, friction, heat
transfer and mass addition. However the results from
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thismethodarenotaccuratefortransientflowproblems
becausesteadystateis assumedwhenthepressure,
temperatureandMachnumberinsidetheflowpathare
calculated.

BothORING2andLapplemethodspredictaccurate
resultsfor steadyflowswithareachangeonly.For
transientflowsor flowswithheattransferor mass
addition,however,thesetwomethodsarenotaccurate.
Althoughthesemethodstry to takeintoaccountthe
effectsof friction,it isaccurateonlywhenthefrictionis
smallenough.
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